Senin, 09 Oktober 2017

LISTRIK DINAMIS

 LISTRIK DINAMIS 

PENGERTIAN
Listrik Dinamis adalah listrik yang dapat bergerak. cara mengukur kuat arus pada listrik dinamis adalah muatan listrik dibagai waktu dengan satuan muatan listrik adalah coulumb dan satuan waktu adalah detik. kuat arus pada rangkaian bercabang sama dengan kuata arus yang masuk sama dengan kuat arus yang keluar. sedangkan pada rangkaian seri kuat arus tetap sama disetiap ujung-ujung hambatan. Sebaliknya tegangan berbeda pada hambatan. pada rangkaian seri tegangan sangat tergantung pada hambatan, tetapi pada rangkaian bercabang tegangan tidak berpengaruh pada hambatan. semua itu telah dikemukakan oleh hukum kirchoff yang berbunyi "jumlah kuat arus listrik yang masuk sama dengan  jumlah kuat arus listrik yang keluar". berdasarkan hukum ohm dapat disimpulkan cara mengukur tegangan listrik adalah kuat arus × hambatan. Hambatan nilainya selalu sama karena tegangan sebanding dengan kuat arus. tegangan memiliki satuan volt(V) dan kuat arus adalah ampere (A) serta hambatan adalah ohm


ARUS LISTRIK
arus listrik adalah mengalirnya elektron secara terus menerus dan berkesinambungan pada konduktor akibat perbedaan jumlah elektron pada beberapa lokasi yang jumlah elektronnya tidak sama. satuan arus listrik adalah Ampere.

Arus listrik bergerak dari terminal positif (+) ke terminal negatif (-), sedangkan aliran listrik dalam kawat logam terdiri dari aliran elektron yang bergerak dari terminal negatif (-) ke terminal positif(+), arah arus listrik dianggap berlawanan dengan arah gerakan elektron.




Formula arus listrik adalah:

I = Q/t (ampere)

Dimana:
I = besarnya arus listrik yang mengalir, ampere
Q = Besarnya muatan listrik, coulomb
t = waktu, detik
Kuat Arus Listrik


Adalah arus yang tergantung pada banyak sedikitnya elektron bebas yang pindah melewati suatu penampang kawat dalam satuan waktu.

Definisi :
Ampere adalah satuan kuat arus listrik yang dapat memisahkan 1,118 milligram perak dari nitrat perak murni dalam satu detik.

Rumus
rumus untuk menghitung banyaknya muatan listrik, kuat arus dan waktu:

Q = I x t
I = Q/t
t = Q/I

Dimana :
Q = Banyaknya muatan listrik dalam satuan coulomb
I = Kuat Arus dalam satuan Amper.
t = waktu dalam satuan detik.
Kuat arus listrik biasa juga disebut dengan arus listrik
muatan listrik memiliki muatan positip dan muatan negatif. Muatan positip dibawa oleh proton, dan muatan negatif dibawa oleh elektro. Satuan muatan coulomb (C), muatan proton +1,6 x 10^-19C, sedangkan muatan elektron -1,6x 10^-19C. Muatan yang bertanda sama saling tolak menolak, muatan bertanda berbeda saling tarik menarik

Rapat Arus

Difinisi : 
rapat arus ialah besarnya arus listrik tiap-tiap mm luas penampang kawat




Arus listrik mengalir dalam kawat penghantar secara merata menurut luas penampangnya. Arus listrik 12 A mengalir dalam kawat berpenampang 4mm, maka kerapatan arusnya 3A/mm (12A/4 mm), ketika penampang penghantar mengecil 1,5mm, maka kerapatan arusnya menjadi 8A/mm (12A/1,5 mm).


 RANGKAIAN LISTRIK

1.Rangkaian Listrik Seri
Rangkaian listrik seri adalah suatu rangkaian listrik, di mana input suatu komponen berasal dari output komponen lainnya. Hal inilah yang menyebabkan rangkaian listrik seri dapat menghemat biaya (digunakan sedikit kabel penghubung). Selain memeliki kelebihan, rangkaian listrik seri juga memiliki suatu kelemahan, yaitu jika salah satu komponen dicabut atau rusak, maka komponen yang lain tidak akan berfungsi sebagaimana mestinya. Misal tiga buah bola lampu dirangkai seri, maka input dari lampu satu akan datang dari output lampu yang lain. Jika salah satu lampu dicabut atau rusak, maka lampu yan lain akan ikut padam. Perhatikanlah rangkaian seri tiga lampu berikut



Persamaan hambatan pengganti rangkaian seri dapat dicari dari persamaan awal, di mana kuat hambatan bernilai berbeda. Untu melihat persamaan hambatan seri, tekanlah tombol berikut arus listrik pada tiap tiap hambaran adalah sama, sedangkan beda potensial di tiap tiap



2. Rangkaian Paralel
Rangakain listrik paralel adalah suatu rangkaian listrik, di mana semua 
input komponen berasal dari  sumber yang sama. Semua komponen satu sama lain tersusun paralel. Hal inilah yang menyebabkan susunan paralel dalam rangkaian listrik menghabiskan biaya yang lebih banyak (kabel penghubung yang diperlukan lebih banyak).
Selain kelemahan tersebut, susunan paralel memiliki kelebihan tertentu dibandingkan susunan seri. Adapun kelebihannya adalah jika salah satu komponen dicabut atau rusak, maka komponen yang lain tetap berfungsi sebagaimana mestinya. Misal tiga buah lampu tersusun paralel, jika salah satu lampu dicabut atau rusak, maka lampu yang lain tidak akan ikut mati. Perhatikanlah gambar susunan paralel dua lampu disamping ini
Persamaan hambatan pengganti paralel dapat dicari dari persamaan awal, di mana beda potensial di masing masing komponen adalah sama satu sama lain, sedangkan kuat arus yang masuk titik percabangan sama dengan jumlah kuat arus di masing masing komponen.



Sedangkan, sifat-sifat rangkaian paralel, adalah sebagai berikut:
Nilai hambatan pengganti menjadi lebih kecil dari nilai hambatan masing-masing,
Kuat arus listrik yang mengalir dalam setiap hambatan berbeda (kecuali nilai setiap hambatan sama, arus pun sama), sebab; itotal = i1 + i2 + i3 + … + in
Dapat dijadikan pembagi arus, karena mematuhi hukum Kirchoff I
Beda potensial antara ujung-ujung setiap hambatan sama, karena Vab = VR1 = VR2 = VR3 = … = VRn,


3. Rangkaian Listrik Campuran
Rangkaian listrik campuran (seri-paralel) merupakan rangkaian listrik gabungan dari rangkaian listrik seri dan rangkaian listrik paralel. Untuk lebih jelasnya tentang rangkaian listrik gabungan (seri-paralel).
             Untuk mencari besarnya hambatan pengganti rangkaian listrik gabungan seri – paralel adalah dengan mencari besaranya hambatan tiap tiap model rangkaian (rangkaian seri dan rangkaian paralel), selanjutnya mencari hambatan gabungan dari model rangkaian akhir yang didapat. Misalnya seperti rangkaian di atas, maka model rangkaian akhir yang didapat adalah model rangkaian seri, sehingga hambatan total rangkaian dicari dengan persamaan hambatan pengganti rangkaian hambatan seri.
       Rangkaian hambatan campuran seri-paralel terdiri dari dua jenis rangkaian, yaitu rangkaian hambatan seri dan rangkaian hambatan paralel. Persamaannnya tidak lain adalah persamaan yang berlaku dalam rangkaian seri dan rangkaian paralel


HUKUM KIRCHOFF

Gustav Robert Kirchhoff (lahir di Königsberg, Prusia, 12 Maret 1824 – meninggal di Berlin, Jerman, 17 Oktober 1887 pada umur 63 tahun) adalah seorang fisikawan Jerman yang berkontribusi pada pemahaman konsep dasar teori rangkaian listrik, spektroskopi, dan emisi radiasi benda hitam yang dihasilkan oleh benda-benda yang dipanaskan. Dia menciptakan istilah radiasi “benda hitam” pada tahun 1862.

Gustav Kirchhoff dilahirkan di Königsberg, Prusia Timur (sekarang Kaliningrad, Rusia), putra dari Friedrich Kirchhoff, seorang pengacara, dan Johanna Henriette Wittke. Dia lulus dari Universitas Albertus Königsberg (sekarang Kaliningrad) pada 1847 dan menikahi Clara Richelot, putri dari profesor-matematikanya, Friedrich Richelot. Pada tahun yang sama, mereka pindah ke Berlin, tempat dimana ia menerima gelar profesor di Breslau (sekarang Wroclaw).
Kirchhoff merumuskan hukum rangkaian, yang sekarang digunakan pada rekayasa listrik, pada 1845, saat dia masih berstatus mahasiswa. Ia mengusulkan hukum radiasi termal pada 1859, dan membuktikannya pada 1861. Di Breslau, ia bekerjasama dalam studi spektroskopi dengan Robert Bunsen. Dia adalah penemu pendamping dari caesium dan rubidium pada 1861 saat mempelajari komposisi kimia Matahari via spektrumnya.
Pada 1862 dia dianugerahi Medali Rumford untuk risetnya mengenai garis-garis spektrum matahari, dan pembalikan garis-garis terang pada spektrum cahaya buatan.
Dia berperan besar pada bidang spektroskopi dengan merumuskan tiga hukum yang menggambarkan komposisi spektrum optik obyek-obyek pijar, berdasar pada penemuan David Alter dan Anders Jonas Angstrom .

Hukum Kirchoff 1 
Di pertengahan abad 19 Gustav Robert Kirchoff (1824 – 1887) menemukan cara untuk menentukan arus listrik pada rangkaian bercabang yang kemudian di kenal dengan Hukum Kirchoff. Hukum kirchoff 1 berbunyi “Jumlah kuat arus yang masuk dalam titik percabangan sama dengan jumlah kuat arus yang keluar dari titik percabangan”. Yang kemudian di kenal sebagai hukum Kirchoff I. Secara matematis dinyatakan :


Hukum Kirchoff 2 
Hukum Kirchoff secara keseluruhan ada 2, setelah yang diatas dijelaskan tentang hukum beliau yang ke 1. Hukum Kirchoff 2 dipakai untuk menentukan kuat arus yang mengalir pada rangkaian bercabang dalam keadaan tertutup (saklar dalam keadaan tertutup). Perhatikan gambar berikut!

Hukum Kirchoff 2 berbunyi: "Dalam rangkaian tertutup, Jumlah aljabbar GGL (E) dan jumlah penurunan potensial sama dengan nol". Maksud dari jumlah penurunan potensial sama dengan nol adalah tidak ada energi listrik yang hilang dalam rangkaian tersebut, atau dalam arti semua energi listrik bisa digunakan atau diserap.

Dari gambar diatas kuat arus yang mengalir dapat ditentukan dengan menggunakan beberapa aturan sebagai berikut:
 1) Tentukan arah putaran arusnya untuk masing-masing loop 2) Arus yang searah dengan arah perumpamaan dianggap positif 3) Arus yang mengalir dari kutub negatif ke kutup positif di dalam elemen dianggap positif 4) Pada loop dari satu titik cabang ke titik cabang berikutnya kuat arusnya sama 5) Jika hasil perhitungan kuat arus positif maka arah perumpamaannya benar, bila negatif berarti arah arus berlawanan dengan arah pada perumpamaan.













Tidak ada komentar:

Posting Komentar